Fibro-Gel: An All-Aqueous Hydrogel Consisting of Microfibers with Tunable Release Profile and its Application in Wound Healing

Yanting Shen, Yuan Liu, Janine K. Nunes, Chenmin Wang, Miao Xu, Michael K.T. To, Howard A. Stone, Ho Cheung Shum

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


Injectable hydrogels are valuable tools in tissue engineering and regenerative medicine due to their unique advantages of injectability with minimal invasiveness and usability for irregularly shaped sites. However, it remains challenging to achieve scalable manufacturing together with matching physicochemical properties and on-demand drug release for a high level of control over biophysical and biomedical cues to direct endogenous cells. Here, the use of an injectable fibro-gel is demonstrated, a water-filled network of entangled hydrogel microfibers, whose physicochemical properties and drug release profiles can be tailored to overcome these shortcomings. This fibro-gel exhibits favorable in vitro biocompatibility and the capability to aid vascularization. The potential use of the fibro-gel for advancing tissue regeneration is explored with a mice excision skin model. Preliminary in vivo tests indicate that the fibro-gel promotes wound healing and new healthy tissue regeneration at a faster rate than a commercial gel. Moreover, it is demonstrated that the release of distinct drugs at different rates can further accelerate wound healing with higher efficiency, by using a two-layer fibro-gel model. The combination of injectability and tailorable properties of this fibro-gel offers a promising approach in biomedical fields such as therapeutic delivery, medical dressings, and 3D tissue scaffolds for tissue engineering.

Original languageEnglish (US)
JournalAdvanced Materials
StateAccepted/In press - 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • General Materials Science


  • biomaterials
  • drug deliveries
  • injectable hydrogels
  • microfluidics
  • wound healing


Dive into the research topics of 'Fibro-Gel: An All-Aqueous Hydrogel Consisting of Microfibers with Tunable Release Profile and its Application in Wound Healing'. Together they form a unique fingerprint.

Cite this