Ferromagnetic quantum critical point induced by dimer-breaking in SrCo 2 (Ge 1-x P x ) 2

Shuang Jia, Pawina Jiramongkolchai, M. R. Suchomel, B. H. Toby, J. G. Checkelsky, Nai Phuan Ong, Robert Joseph Cava

Research output: Contribution to journalArticle

55 Scopus citations

Abstract

In contrast to classical phase transitions driven by temperature,a quantum critical point (QCP) defines a transition at zero temperature that is driven by non-thermal parameters 1-3 . In the known quantum critical d-electron systems, tuning the electronic bandwidth by means of changing the applied pressure or unit-cell dimensions, or tuning the d-state population, is used to drive the criticality 4-6 . Here we describe how a novel chemical parameter, the breaking of bonds in Geg-Ge dimers that occurs within the intermetallic framework in SrCo 2 (Ge 1-x P x ) 2 , results in the appearance of a ferromagnetic (FM) QCP. Although both SrCo 2 P 2 and SrCo 2 Ge 2 are paramagnetic, weak itinerant ferromagnetism unexpectedly develops during the course of the dimer breaking, and a QCP is observed at the onset of the FM phase. The use of chemical bond breaking as a tuning parameter to induce QCP opens an avenue for designing and studying novel magnetic materials.

Original languageEnglish (US)
Pages (from-to)207-210
Number of pages4
JournalNature Physics
Volume7
Issue number3
DOIs
StatePublished - Jan 1 2011

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Ferromagnetic quantum critical point induced by dimer-breaking in SrCo <sub>2</sub> (Ge <sub>1-x</sub> P <sub>x</sub> ) <sub>2</sub>'. Together they form a unique fingerprint.

  • Cite this