Abstract
The phase diagram of sodium chloride (NaCl) under laser shock compression has been studied at Linac Coherent Light Source (LCLS) at the x-ray free-electron laser facility. Both solid-solid (B1 → B2) and solid-liquid (B2 → liquid) transitions have been observed along the Hugoniot over nanosecond time scales. By combining structural measurements through in situ x-ray diffraction, pressure determination through velocimetry, and a thermal equation-of-state, the shock-compressed data are used to constrain the phase diagram of NaCl. Transformation into the B2 phase is found to occur at 28(2) GPa, and B2-liquid coexistence is observed between 54(4) and 66(6) GPa, with near full melt at 66(6) GPa. Late-time pressure release from an initial shocked B2-state results in a B2 → B1 back transformation. Our results show agreement with previous static compression data, suggesting that the time scale for melting is very rapid and that equilibrium states in NaCl are being accessed over nanosecond time scales. A multiphase equation-of-state description of NaCl incorporated into a one-dimensional hydrocode is used to interpret pressure and temperature evolution over these rapid time scales.
Original language | English (US) |
---|---|
Article number | 083901 |
Journal | Journal of Applied Physics |
Volume | 132 |
Issue number | 8 |
DOIs | |
State | Published - Aug 28 2022 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy