Features of a Smad3 MH1-DNA complex: Roles of water and zinc in DNA binding

Jijie Chai, Jia Wei Wu, Nieng Yan, Joan Massagué, Nikola P. Pavletich, Yigong Shi

Research output: Contribution to journalArticlepeer-review

65 Scopus citations


The Smad family of proteins mediates transforming growth factor-β signaling from cell membrane to the nucleus. In the nucleus, Smads serve as transcription factors by directly binding to specific DNA sequences and regulating the expression of ligand-response genes. A previous structural analysis, at 2.8-Å resolution, revealed a novel DNA-binding mode for the Smad MH1 domain but did not allow accurate assignment of the fines features of protein-DNA interactions. The crystal structure of a Smad3 MH1 domain bound to a palindromic DNA sequence, determined at 2.4-Å resolution, reveals a surprisingly important role for water molecules. The asymmetric placement of the DNA-binding motif (a conserved 11-residue β-hairpin) in the major groove of DNA is buttressed by seven well ordered water molecules. These water molecules make specific hydrogen bonds to the DNA bases, the DNA phosphate backbones, and several critical Smad3 residues. In addition, the MH1 domain is found to contain a bound zinc atom using four invariant residues among Smad proteins, three cysteines and one histidine. Removal of the zinc atom results in compromised DNA binding activity. These results define the Smad MH1 domain as a zinc-coordinating module that exhibits unique DNA binding properties.

Original languageEnglish (US)
Pages (from-to)20327-20331
Number of pages5
JournalJournal of Biological Chemistry
Issue number22
StatePublished - May 30 2003

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Biochemistry
  • Cell Biology


Dive into the research topics of 'Features of a Smad3 MH1-DNA complex: Roles of water and zinc in DNA binding'. Together they form a unique fingerprint.

Cite this