TY - GEN
T1 - Faster rates for the frank-Wolfe method over strongly-convex sets
AU - Garber, Dan
AU - Hazan, Elad
PY - 2015
Y1 - 2015
N2 - The Frank-Wolfe method (a.k.a. conditional gradient algorithm) for smooth optimization has regained much interest in recent years in the context of large scale optimization and machine learning. A key advantage of the method is that it avoids projections - the computational bottleneck in many applications - replacing it by a linear optimization step. Despite this advantage, the known convergence rates of the FW method fall behind standard first order methods for most settings of interest. It is an active line of research to derive faster linear optimization-based algorithms for various settings of convex optimization. In this paper we consider the special case of optimization over strongly convex sets, for which we prove that the vanila FW method converges at a rate of 1/t2. This gives a quadratic improvement in convergence rate compared to the general case, in which convergence is of the order t, and known to be tight. We show that various balls induced by ℓp norms, Schatten norms and group norms are strongly convex on one hand and on the other hand, linear optimization over these sets is straightforward and admits a closed-form solution. We further show how several previous fast-rate results for the FW method follow easily from our analysis.
AB - The Frank-Wolfe method (a.k.a. conditional gradient algorithm) for smooth optimization has regained much interest in recent years in the context of large scale optimization and machine learning. A key advantage of the method is that it avoids projections - the computational bottleneck in many applications - replacing it by a linear optimization step. Despite this advantage, the known convergence rates of the FW method fall behind standard first order methods for most settings of interest. It is an active line of research to derive faster linear optimization-based algorithms for various settings of convex optimization. In this paper we consider the special case of optimization over strongly convex sets, for which we prove that the vanila FW method converges at a rate of 1/t2. This gives a quadratic improvement in convergence rate compared to the general case, in which convergence is of the order t, and known to be tight. We show that various balls induced by ℓp norms, Schatten norms and group norms are strongly convex on one hand and on the other hand, linear optimization over these sets is straightforward and admits a closed-form solution. We further show how several previous fast-rate results for the FW method follow easily from our analysis.
UR - http://www.scopus.com/inward/record.url?scp=84969531714&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84969531714&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84969531714
T3 - 32nd International Conference on Machine Learning, ICML 2015
SP - 541
EP - 549
BT - 32nd International Conference on Machine Learning, ICML 2015
A2 - Bach, Francis
A2 - Blei, David
PB - International Machine Learning Society (IMLS)
T2 - 32nd International Conference on Machine Learning, ICML 2015
Y2 - 6 July 2015 through 11 July 2015
ER -