Abstract
In many online learning problems the computational bottleneck for gradient-based methods is the projection operation. For this reason, in many problems the most efficient algorithms are based on the Frank-Wolfe method, which replaces projections by linear optimization. In the general case, however, online projection-free methods require more iterations than projection-based methods: the best known regret bound scales as T3/4. Despite significant work on various variants of the Frank-Wolfe method, this bound has remained unchanged for a decade. In this paper we give an efficient projection-free algorithm that guarantees T2/3 regret for general online convex optimization with smooth cost functions and one linear optimization computation per iteration. As opposed to previous Frank-Wolfe approaches, our algorithm is derived using the Follow-the-Perturbed-Leader method and is analyzed using an online primal-dual framework.
Original language | English (US) |
---|---|
Pages (from-to) | 1877-1893 |
Number of pages | 17 |
Journal | Proceedings of Machine Learning Research |
Volume | 125 |
State | Published - 2020 |
Event | 33rd Conference on Learning Theory, COLT 2020 - Virtual, Online, Austria Duration: Jul 9 2020 → Jul 12 2020 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability
Keywords
- Follow-the-Perturbed-Leader
- Frank-Wolfe method
- Online optimization