Abstract
We show that natural classes of regularized learning algorithms with a form of recency bias achieve faster convergence rates to approximate efficiency and to coarse correlated equilibria in multiplayer normal form games. When each player in a game uses an algorithm from our class, their individual regret decays at O(T-3/4), while the sum of utilities converges to an approximate optimum at O(T-1)-an improvement upon the worst case O(T-1/2) rates. We show a blackbox reduction for any algorithm in the class to achieve Õ (T-1/2) rates against an adversary, while maintaining the faster rates against algorithms in the class. Our results extend those of Rakhlin and Shridharan [17] and Daskalakis et al. [4], who only analyzed two-player zero-sum games for specific algorithms.
Original language | English (US) |
---|---|
Pages (from-to) | 2989-2997 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2015-January |
State | Published - 2015 |
Externally published | Yes |
Event | 29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada Duration: Dec 7 2015 → Dec 12 2015 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing