Factors governing the oceanic nitrous oxide distribution: Simulations with an ocean general circulation model

P. Suntharalingam, Jorge Louis Sarmiento

Research output: Contribution to journalArticlepeer-review

100 Scopus citations

Abstract

A global model of the oceanic nitrous oxide distribution is developed to evaluate current understanding of the processes governing nitrous oxide formation and distribution in the open ocean. N2O is treated as a nonconserved tracer in a global ocean general circulation model subject to biological sources in the oceanic interior and gas exchange at the ocean surface. A simple scalar parameterization linking N2O production to oxygen consumption (and based on observed correlations between excess N2O and apparent oxygen utilization) is successful in reproducing the large-scale features of the observed distribution, namely, high surface super-saturations in regions of upwelling and biological productivity, and values close to equilibrium in the oligotrophic subtropical gyres. The majority of the oceanic N2O source is produced in the upper water column (over 75% above 600 m) and effluxes directly to the atmosphere in the latitude band of formation. The observed structure at depth is not as well reproduced by this model, which displays excessive N2O production in the deep ocean. An alternative source parameterization, which accounts for processes which result in a depth variation in the relationship between N2O production and oxygen consumption, yields an improved representation of the deep distribution. The surface distribution and sea-air flux are, however, determined primarily by the upper ocean source and, therefore, are relatively insensitive to changes in the nature of deep oceanic N2O production.

Original languageEnglish (US)
Pages (from-to)429-454
Number of pages26
JournalGlobal Biogeochemical Cycles
Volume14
Issue number1
DOIs
StatePublished - Mar 1 2000

All Science Journal Classification (ASJC) codes

  • Global and Planetary Change
  • Environmental Chemistry
  • General Environmental Science
  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Factors governing the oceanic nitrous oxide distribution: Simulations with an ocean general circulation model'. Together they form a unique fingerprint.

Cite this