TY - JOUR
T1 - Factorization of certain evolution operators using lie algebra
T2 - Formulation of the method
AU - Demiralp, Metin
AU - Rabitz, Herschel
PY - 1991/12
Y1 - 1991/12
N2 - In this work, a new method to factorize certain evolution operators into an infinite product of simple evolution operators is presented. The method uses Lie operator algebra and the evolution operators are restricted to exponential form. The argument of these forms is a first-order linear partial differential operator. The method has broad applications, including the areas of sensitivity analysis, the solution of ordinary differential equations, and the solution of Liouville's equation. A sequence of ξ-approximants is generated to represent the Lie operators. Under certain conditions, the convergence rate of the ξ-approximant sequences is remarkably high. This work presents the general formulation of the scheme and some simple illustrative examples. Investigation of convergence properties is given in a companion paper.
AB - In this work, a new method to factorize certain evolution operators into an infinite product of simple evolution operators is presented. The method uses Lie operator algebra and the evolution operators are restricted to exponential form. The argument of these forms is a first-order linear partial differential operator. The method has broad applications, including the areas of sensitivity analysis, the solution of ordinary differential equations, and the solution of Liouville's equation. A sequence of ξ-approximants is generated to represent the Lie operators. Under certain conditions, the convergence rate of the ξ-approximant sequences is remarkably high. This work presents the general formulation of the scheme and some simple illustrative examples. Investigation of convergence properties is given in a companion paper.
UR - http://www.scopus.com/inward/record.url?scp=34249920474&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34249920474&partnerID=8YFLogxK
U2 - 10.1007/BF01192579
DO - 10.1007/BF01192579
M3 - Article
AN - SCOPUS:34249920474
SN - 0259-9791
VL - 6
SP - 165
EP - 191
JO - Journal of Mathematical Chemistry
JF - Journal of Mathematical Chemistry
IS - 1
ER -