Abstract
"Extreme" adaptive optics systems are optimized for ultra-high-contrast applications, such as ground-based extrasolar planet detection. The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A simple optical design allows us to minimize wavefront error and maximize the experimentally achievable contrast before progressing to a more complex set-up. A phase shifting diffraction interferometer is used to measure wavefront errors with sub-nm precision and accuracy. We have demonstrated RMS wavefront errors of < 1.3 nm and a contrast of >10 -7 over a substantial region using a shaped pupil. Current work includes the installation and characterization of a 1024-actuator Micro-Electro-Mechanical-Systems (MEMS) deformable mirror, manufactured by Boston Micro-Machines, which will be used for wavefront control. In our initial experiments we can flatten the deformable mirror to 1.8-nm RMS wavefront error within a control radius of 5-13 cycles per aperture. Ultimately this testbed will be used to test all aspects of the system architecture for an extrasolar planet-finding AO system. high-contrast imaging, extrasolar planet detection, interferometery, adaptive optics, micro-electrical-mechanical-systems.
Original language | English (US) |
---|---|
Article number | 178 |
Pages (from-to) | 954-959 |
Number of pages | 6 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 5490 |
Issue number | PART 2 |
DOIs | |
State | Published - 2004 |
Event | Advancements in Adaptive Optics - Glasgow, United Kingdom Duration: Jun 21 2004 → Jun 25 2004 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering