Extracting useful computation from error-prone processors for streaming applications

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

As semiconductor fabrics scale closer to fundamental physical limits, their reliability is decreasing due to process variation, noise margin effects, aging effects, and increased susceptibility to soft errors. Reliability can be regained through redundancy, error checking with recovery, voltage scaling and other means, but these techniques impose area/energy costs. Since some applications (e.g. media) can tolerate limited computation errors and still provide useful results, error-tolerant computation models have been explored, with both the application and computation fabric having stochastic characteristics. Stochastic computation has, however, largely focused on application-specific hardware solutions, and is not general enough to handle arbitrary bit errors that impact memory addressing or control in processors. In response, this paper addresses requirements for error-tolerant execution by proposing and evaluating techniques for running error-tolerant software on a general-purpose processor built from an unreliable fabric. We study the minimum error-protection required, from a microarchitecture perspective, to still produce useful results at the application output. Even with random errors as frequent as every 250 μs, our proposed design allows JPEG and MP3 benchmarks to sustain good output quality-14dB and 7dB respectively. Overall, this work establishes the potential for error-tolerant single-threaded execution, and details its required hardware/system support.

Original languageEnglish (US)
Title of host publicationProceedings - Design, Automation and Test in Europe, DATE 2013
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages202-207
Number of pages6
ISBN (Print)9783981537000
DOIs
StatePublished - 2013
Event16th Design, Automation and Test in Europe Conference and Exhibition, DATE 2013 - Grenoble, France
Duration: Mar 18 2013Mar 22 2013

Publication series

NameProceedings -Design, Automation and Test in Europe, DATE
ISSN (Print)1530-1591

Other

Other16th Design, Automation and Test in Europe Conference and Exhibition, DATE 2013
Country/TerritoryFrance
CityGrenoble
Period3/18/133/22/13

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Extracting useful computation from error-prone processors for streaming applications'. Together they form a unique fingerprint.

Cite this