Abstract
Quantum states can be subjected to classical measurements, whose incompatibility, or uncertainty, can be quantified by a comparison of certain entropies. There is a long history of such entropy inequalities between position and momentum. Recently these inequalities have been generalized to the tensor product of several Hilbert spaces and we show here how their derivations can be shortened to a few lines and how they can be generalized. Our proofs utilize the technique of the original derivation of strong subadditivity of the von Neumann entropy.
Original language | English (US) |
---|---|
Pages (from-to) | 487-495 |
Number of pages | 9 |
Journal | Communications In Mathematical Physics |
Volume | 323 |
Issue number | 2 |
DOIs | |
State | Published - Oct 2013 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Mathematical Physics