Abstract
The pressure-temperature explosion limits of H 2 /CH 4 /O 2 mixtures were analyzed computationally and analytically. It is shown that, with the addition of around 5% of H 2 to the mixture, the explosion limit evolves from being monotonic to the non-monotonic Z-shaped response characteristic of H 2 /O 2 explosions. Such transition is much less sensitive compared to the H 2 /CO/O 2 system, and is explained by the different responses of the kinetic parameters corresponding to O and OH radical competitions by H 2 and CH 4. It is further shown that the explosion limits at various conditions can be reproduced well with a reduced mechanism of 22 elementary steps and 17 species. Further eigenvalue analysis with quasi-steady state simplification leads to accurate analytic solutions for the explosion limits, with explicit expressions for the controlling pathways for different H 2 and CH 4 concentrations. Both linear radical-reactant reactions and nonlinear radical-radical reactions of H 2 and CH 4 oxidations are investigated, leading to enhanced insight of this foundational component in the mechanisms of hydrocarbon oxidations and of the efficient utilization of natural gas.
Original language | English (US) |
---|---|
Pages (from-to) | 493-500 |
Number of pages | 8 |
Journal | Proceedings of the Combustion Institute |
Volume | 37 |
Issue number | 1 |
DOIs | |
State | Published - 2019 |
All Science Journal Classification (ASJC) codes
- General Chemical Engineering
- Mechanical Engineering
- Physical and Theoretical Chemistry
Keywords
- Eigenvalue analysis
- Explosion limits
- Methane
- Syngas