Abstract
Molecular polaritons, hybrid light-matter states resulting from strong cavity coupling of optical transitions, may provide a new route to guide chemical reactions. However, demonstrations of cavity-modified reactivity in clean benchmark systems are still needed to clarify the mechanisms and scope of polariton chemistry. Here, we use transient absorption to observe the ultrafast dynamics of CN radicals interacting with a cyclohexane (c-C6H12) and chloroform (CHCl3) solvent mixture under vibrational strong coupling of a C-H stretching mode of c-C6H12. By modulating the c-C6H12:CHCl3 ratio, we explore how solvent complexation and hydrogen (H)-abstraction processes proceed under collective cavity coupling strengths ranging from 55 to 85cm-1. Reaction rates remain unchanged for all extracavity, on-resonance, and off-resonance cavity coupling conditions, regardless of coupling strength. These results suggest that insufficient vibrational cavity coupling strength may not be the determining factor for the negligible cavity effects observed previously in H-abstraction reactions of CN with CHCl3.
Original language | English (US) |
---|---|
Pages (from-to) | 2591-2599 |
Number of pages | 9 |
Journal | Nanophotonics |
Volume | 13 |
Issue number | 14 |
DOIs | |
State | Published - Jun 1 2024 |
All Science Journal Classification (ASJC) codes
- Biotechnology
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Electrical and Electronic Engineering
Keywords
- hydrogen abstraction reactions
- polariton chemistry
- ultrafast transient absorption
- vibrational strong coupling