Exploring quantum control landscape structure

Arun Nanduri, Ashley Donovan, Tak San Ho, Herschel Rabitz

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

A common goal of quantum control is to maximize a physical observable through the application of a tailored field. The observable value as a function of the field constitutes a quantum-control landscape. Previous papers have shown, under specified conditions, that the quantum-control landscape should be free of suboptimal critical points. This favorable landscape topology is one factor contributing to the efficiency of climbing the landscape. An additional complementary factor is the landscape structure, which constitutes all nontopological features. If the landscape's structure is too complex, then climbs may be forced to take inefficient convoluted routes to find optimal controls. This paper provides a foundation for understanding control-landscape structure by examining the linearity of gradient-based optimization trajectories through the space of control fields. For this assessment, a metric R≥1 is defined as the ratio of the path length of the optimization trajectory to the Euclidean distance between the initial control field and the resultant optimal control field that takes an observable from the bottom to the top of the landscape. Computational analyses for simple model quantum systems are performed to ascertain the relative abundance of nearly straight control trajectories encountered when optimizing a state-to-state transition probability. The distribution of R values is found to be centered near remarkably low values upon sampling large numbers of randomly chosen initial control fields. Additionally, a stochastic algorithm is used to locate many distinct initial control fields, each of which corresponds to the start of an almost straight control trajectory with R 1.0. The collected results indicate that quantum-control landscapes have very simple structural features. The favorable topology and the complementary simple structure of the control landscape provide a basis for understanding the generally observed ease of optimizing a state-to-state transition probability.

Original languageEnglish (US)
Article number033425
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume88
Issue number3
DOIs
StatePublished - Sep 30 2013

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Exploring quantum control landscape structure'. Together they form a unique fingerprint.

Cite this