Exploring collections of 3D models using fuzzy correspondences

Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Stephen DiVerdi, Thomas Funkhouser

Research output: Contribution to journalArticlepeer-review

145 Scopus citations

Abstract

Large collections of 3D models from the same object class (e.g., chairs, cars, animals) are now commonly available via many public repositories, but exploring the range of shape variations across such collections remains a challenging task. In this work, we present a new exploration interface that allows users to browse collections based on similarities and differences between shapes in userspecified regions of interest (ROIs). To support this interactive system, we introduce a novel analysis method for computing similarity relationships between points on 3D shapes across a collection. We encode the inherent ambiguity in these relationships using fuzzy point correspondences and propose a robust and efficient computational framework that estimates fuzzy correspondences using only a sparse set of pairwise model alignments.We evaluate our analysis method on a range of correspondence benchmarks and report substantial improvements in both speed and accuracy over existing alternatives. In addition, we demonstrate how fuzzy correspondences enable key features in our exploration tool, such as automated view alignment, ROI-based similarity search, and faceted browsing.

Original languageEnglish (US)
Article number54
JournalACM Transactions on Graphics
Volume31
Issue number4
DOIs
StatePublished - Jul 2012

All Science Journal Classification (ASJC) codes

  • Computer Graphics and Computer-Aided Design

Keywords

  • Database analysis
  • Exploration
  • Fuzzy correspondence
  • Model collections
  • Shape analysis

Fingerprint

Dive into the research topics of 'Exploring collections of 3D models using fuzzy correspondences'. Together they form a unique fingerprint.

Cite this