Abstract
We consider a detection problem where sensors experience noisy measurements and intermittent communication opportunities to a centralized fusion center (or cloud). The objective of the problem is to arrive at the correct estimate of event detection in the environment. The sensors may communicate locally with other sensors (local clusters) where they fuse their noisy sensor data to estimate the detection of an event locally. In addition, each sensor cluster can intermittently communicate to the cloud, where a centralized fusion center fuses estimates from all sensor clusters to make a final determination regarding the occurrence of the event across the deployment area. We refer to this hybrid communication scheme as a cloud-cluster architecture. Minimizing the expected loss function of networks where noisy sensors are intermittently connected to the cloud, as in our hybrid communication scheme, has not been investigated to our knowledge. We leverage recently improved concentration inequalities to arrive at an optimized decision rule for each cluster and we analyze the expected detection performance resulting from our hybrid scheme. Our analysis shows that clustering the sensors provides resilience to noise in the case of low communication probability with the cloud. For larger clusters, a steep improvement in detection performance is possible even for a low communication probability by using our cloud-cluster architecture.
Original language | English (US) |
---|---|
Article number | 9348131 |
Journal | Proceedings - IEEE Global Communications Conference, GLOBECOM |
Volume | 2020-January |
DOIs | |
State | Published - Dec 2020 |
Event | 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Virtual, Taipei, Taiwan, Province of China Duration: Dec 7 2020 → Dec 11 2020 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Computer Networks and Communications
- Hardware and Architecture
- Signal Processing