Explicit Expanders of Every Degree and Size

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

An (n, d, λ)-graph is a d regular graph on n vertices in which the absolute value of any nontrivial eigenvalue is at most λ. For any constant d ≥ 3, ϵ > 0 and all sufficiently large n we show that there is a deterministic poly(n) time algorithm that outputs an (n, d, λ)-graph (on exactly n vertices) with λ≤2d−1+ϵ. For any d=p + 2 with p ≡ 1 mod 4 prime and all sufficiently large n, we describe a strongly explicit construction of an (n, d, λ)-graph (on exactly n vertices) with λ≤2(d−1)+d−2+o(1)(<(1+2)d−1+o(1)), with the o(1) term tending to 0 as n tends to infinity. For every ϵ> 0, d> d0(ϵ) and n>n0(d, ϵ) we present a strongly explicit construction of an (m, d, λ)-graph with λ<(2+ϵ)d and m = n + o(n). All constructions are obtained by starting with known Ramanujan or nearly Ramanujan graphs and modifying or packing them in an appropriate way. The spectral analysis relies on the delocalization of eigenvectors of regular graphs in cycle-free neighborhoods.

Original languageEnglish (US)
Pages (from-to)447-463
Number of pages17
JournalCombinatorica
Volume41
Issue number4
DOIs
StatePublished - Aug 2021

All Science Journal Classification (ASJC) codes

  • Discrete Mathematics and Combinatorics
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Explicit Expanders of Every Degree and Size'. Together they form a unique fingerprint.

Cite this