Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene

X. L. Zheng, T. F. Lu, C. K. Law

Research output: Contribution to journalConference articlepeer-review

204 Scopus citations

Abstract

The ignition temperatures of nitrogen-diluted 1,3-butadiene by heated air in counterflow were experimentally determined for pressures up to 5 atmospheres and pressure-weighted strain rates from 100 to 250 s-1. The experimental data were compared with computational results using the mechanism of Laskin et al. [A. Laskin, H. Wang and C.K. Law, Int. J. Chem. Kinet. 32 (10) (2000) 589-614], showing that while the overall prediction is approximately within the experimental uncertainty, the mechanism over-predicts ignition temperature by about 25-40 K, with the differences becoming larger at high pressure/low temperature region. Sensitivity analyses for the near-ignition states were performed for both reactions and diffusion, which identified the importance of H2ZCO chain reactions, three 1,3-butadiene reaction pathways, and the binary diffusion between 1,3-butadiene and N2 on ignition. The detailed mechanism, consisting of 94 species and 614 reactions, was then simplified to a skeletal mechanism consisting of 46 species and 297 reactions by using a new reduction algorithm combining directed relation graph and sensitivity analysis. The skeletal mechanism was further simplified to a 30-step reduced mechanism by using computational singular perturbation and quasi-steady-state assumptions. Both the skeletal and reduced mechanisms mimic the performance of the detailed mechanism with good accuracy in both homogeneous and heterogeneous systems.

Original languageEnglish (US)
Pages (from-to)367-375
Number of pages9
JournalProceedings of the Combustion Institute
Volume31 I
Issue number1
DOIs
StatePublished - 2007
Event31st International Symposium on Combustion - Heidelberg, Germany
Duration: Aug 5 2006Aug 11 2006

All Science Journal Classification (ASJC) codes

  • General Chemical Engineering
  • Mechanical Engineering
  • Physical and Theoretical Chemistry

Keywords

  • 1,3-Butadiene
  • Direct relation graph
  • Ignition temperature
  • Reduced mechanism
  • Skeletal mechanism

Fingerprint

Dive into the research topics of 'Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene'. Together they form a unique fingerprint.

Cite this