TY - JOUR
T1 - Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations
AU - Castro, Angel
AU - Córdoba, Diego
AU - Gómez-Serrano, Javier
N1 - Publisher Copyright:
© 2016.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - Motivated by the recent work of Hassainia and Hmidi, we close the question of the existence of convex global rotating solutions for the generalized surface quasigeostrophic equation for α ε [1, 2]. We also show C∞-regularity of their boundary for all α ε (0, 2).
AB - Motivated by the recent work of Hassainia and Hmidi, we close the question of the existence of convex global rotating solutions for the generalized surface quasigeostrophic equation for α ε [1, 2]. We also show C∞-regularity of their boundary for all α ε (0, 2).
UR - http://www.scopus.com/inward/record.url?scp=84963877240&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84963877240&partnerID=8YFLogxK
U2 - 10.1215/00127094-3449673
DO - 10.1215/00127094-3449673
M3 - Article
AN - SCOPUS:84963877240
SN - 0012-7094
VL - 165
SP - 935
EP - 984
JO - Duke Mathematical Journal
JF - Duke Mathematical Journal
IS - 5
ER -