Excitonic Bose Polarons in Electron-Hole Bilayers

Erik A. Szwed, Brian Vermilyea, Darius J. Choksy, Zhiwen Zhou, Michael M. Fogler, Leonid V. Butov, Dmitry K. Efimkin, Kirk W. Baldwin, Loren Pfeiffer

Research output: Contribution to journalArticlepeer-review

Abstract

Bose polarons are mobile particles of one kind dressed by excitations of the surrounding degenerate Bose gas of particles of another kind. These many-body objects have been realized in ultracold atomic gases and become a subject of intensive studies. In this work, we show that excitons in electron-hole bilayers offer new opportunities for exploring polarons in strongly interacting, highly tunable bosonic systems. We found that Bose polarons are formed by spatially direct excitons immersed in degenerate Bose gases of spatially indirect excitons (IXs). We detected both attractive and repulsive Bose polarons by measuring photoluminescence excitation spectra. We controlled the density of IX Bose gas by optical excitation and observed an enhancement of the energy splitting between attractive and repulsive Bose polarons with increasing IX density, in agreement with our theoretical calculations.

Original languageEnglish (US)
Pages (from-to)13219-13223
Number of pages5
JournalNano Letters
Volume24
Issue number42
DOIs
StatePublished - Oct 23 2024

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanical Engineering

Keywords

  • excitons
  • heterostructures
  • polarons
  • semiconductors

Fingerprint

Dive into the research topics of 'Excitonic Bose Polarons in Electron-Hole Bilayers'. Together they form a unique fingerprint.

Cite this