Examining Flood Frequency Distributions in the Midwest U.S.

Gabriele Villarini, James Smith, Mary Lynn Baeck, Witold F. Krajewski

Research output: Contribution to journalArticlepeer-review

130 Scopus citations


Annual maximum peak discharge time series from 196 stream gage stations with a record of at least 75years from the Midwest United States is examined to study flood peak distributions from a regional point of view. The focus of this study is to evaluate: (1) "mixtures" of flood peak distributions, (2) upper tail and scaling properties of the flood peak distributions, and (3) presence of temporal nonstationarities in the flood peak records. Warm season convective systems are responsible for some of the largest floods in the area, in particular in Nebraska, Kansas, and Iowa. Spring events associated with snowmelt and rain-on-snow are common in the northern part of the study domain. Nonparametric tests are used to investigate the presence of abrupt and slowly varying changes. Change-points rather than monotonic trends are responsible for most violations of the stationarity assumption. The abrupt changes in flood peaks can be associated with anthropogenic changes, such as changes in land use/land cover, agricultural practice, and construction of dams. The trend analyses do not suggest an increase in the flood peak distribution due to anthropogenic climate change. Examination of the upper tail and scaling properties of the flood peak distributions are examined by means of the location, scale, and shape parameters of the Generalized Extreme Value distribution.

Original languageEnglish (US)
Pages (from-to)447-463
Number of pages17
JournalJournal of the American Water Resources Association
Issue number3
StatePublished - Jun 2011

All Science Journal Classification (ASJC) codes

  • Ecology
  • Water Science and Technology
  • Earth-Surface Processes


  • Extreme value statistics
  • Flooding
  • Land-use/land-cover change
  • Mixture distribution
  • Stationarity
  • Streamflow


Dive into the research topics of 'Examining Flood Frequency Distributions in the Midwest U.S.'. Together they form a unique fingerprint.

Cite this