## Abstract

Long-lived droplet fluctuations can dominate the long-time equilibrium dynamics of long-range-ordered Ising systems, yielding nonexponential decay of temporal spin autocorrelations. For the two-dimensional pure Ising model the long-time decay is a stretched exponential, exp(- t/), where t is time and a correlation time. For systems with quenched random-exchange disorder the spatially averaged correlation decays as a power of time, t-x, with the exponent x in general being nonuniversal. For systems with quenched random-field disorder the decay is slower still, as exp[-k(lnt)(d-2)/(d-1)], where k is a nonuniversal number and d is the dimensionality of the system. The low-frequency noise from this slow dynamics may be experimentally detectable, as is the analogous noise in spin-glass ordered phases.

Original language | English (US) |
---|---|

Pages (from-to) | 6841-6846 |

Number of pages | 6 |

Journal | Physical Review B |

Volume | 35 |

Issue number | 13 |

DOIs | |

State | Published - Jan 1 1987 |

Externally published | Yes |

## All Science Journal Classification (ASJC) codes

- Condensed Matter Physics