Abstract
Microphysical properties of cirrus clouds largely influence their atmospheric radiative forcing. However, uncertainties remain in simulating/parameterizing the evolution of ice crystals. These uncertainties require more analyses in the Lagrangian view, yet most in situ observations are in the Eulerian view. Here we demonstrate a new method to separate out five phases of ice crystal evolution, using the horizontal spatial relationships between ice supersaturated regions (ISSRs) and ice crystal regions (ICRs). Based on global in situ data sets, we show that the samples of clear-sky ISSRs, ice crystal formation/growth, and evaporation/sedimentation are ~20%, 10%, and 70% of the total ISSR + ICR samples, respectively. In addition, the variance of number-weighted mean diameter (Dc) becomes narrower during the evolution, while the distribution of ice crystal number density (Nc) becomes wider. The new method helps to understand the evolution of ICRs and ISSRs on the microscale by using in situ Eulerian observations. Key Points In-situ aircraft observations of cirrus ice crystal life cycle Cirrus ice crystals mainly in sublimation relative to growth, nucleation phases Simple method to convert aircraft observations to cloud life cycle
Original language | English (US) |
---|---|
Pages (from-to) | 3473-3478 |
Number of pages | 6 |
Journal | Geophysical Research Letters |
Volume | 40 |
Issue number | 13 |
DOIs | |
State | Published - Jul 16 2013 |
All Science Journal Classification (ASJC) codes
- Geophysics
- General Earth and Planetary Sciences
Keywords
- cirrus
- cloud life cycle
- cloud lifetime
- ice crystal
- ice supersaturation
- nucleation