Abstract
Growing observational evidence indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z ∼ 5-7 galaxies. This line emission makes z ∼ 5-7 galaxies appear more massive, with lower specific star-formation rates (sSFRs). However, corrections for this line emission have been difficult to perform reliably because of huge uncertainties on the strength of such emission at z ≳ 5.5. In this paper, we present the most direct observational evidence thus far for ubiquitous high-equivalent-width (EW) [O III] + Hβ line emission in Lyman-break galaxies at z ∼ 7, and we present a strategy for an improved measurement of the sSFR at z ∼ 7. We accomplish this through the selection of bright galaxies in the narrow redshift window z ∼ 6.6-7.0 where the Spitzer/Infrared Array Camera (IRAC) 4.5 μm flux provides a clean measurement of the stellar continuum light, in contrast with the 3.6 μm flux, which is contaminated by the prominent [O III] + Hβ lines. To ensure a high signal-to-noise ratio for our IRAC flux measurements, we consider only the brightest (H 160 < 26 mag) magnified galaxies we have identified behind galaxy clusters. It is remarkable that the mean rest-frame optical color for our bright seven-source sample is very blue, [3.6]-[4.5] = -0.9 ± 0.3. Such blue colors cannot be explained by the stellar continuum light and require that the rest-frame EW of [O III] + Hβ is greater than 637 Å for the average source. The four bluest sources from our seven-source sample require an even more extreme EW of 1582 Å. We can also set a robust lower limit of ≳ 4 Gyr-1 on the sSFR of our sample based on the mean spectral energy distribution.
Original language | English (US) |
---|---|
Article number | 58 |
Journal | Astrophysical Journal |
Volume | 784 |
Issue number | 1 |
DOIs | |
State | Published - Mar 20 2014 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- evolution galaxies
- formation galaxies
- galaxies
- high-redshift