@inproceedings{e89f0a3891284f7ebb80f668ac12bfd3,
title = "Evidence for the size principle in semantic and perceptual domains",
abstract = "Shepard's Universal Law of Generalization offered a compelling case for the first physics-like law in cognitive science that should hold for all intelligent agents in the universe. Shepard's account is based on a rational Bayesian model of generalization, providing an answer to the question of why such a law should emerge. Extending this account to explain how humans use multiple examples to make better generalizations requires an additional assumption, called the size principle: hypotheses that pick out fewer objects should make a larger contribution to generalization. The degree to which this principle warrants similarly law-like status is far from conclusive. Typically, evaluating this principle has not been straightforward, requiring additional assumptions. We present a new method for evaluating the size principle that is more direct, and apply this method to a diverse array of datasets. Our results provide support for the broad applicability of the size principle.",
keywords = "generalization, perception, similarity, size principle",
author = "Peterson, {Joshua C.} and Griffiths, {Thomas L.}",
note = "Publisher Copyright: {\textcopyright} CogSci 2017.; 39th Annual Meeting of the Cognitive Science Society: Computational Foundations of Cognition, CogSci 2017 ; Conference date: 26-07-2017 Through 29-07-2017",
year = "2017",
language = "English (US)",
series = "CogSci 2017 - Proceedings of the 39th Annual Meeting of the Cognitive Science Society: Computational Foundations of Cognition",
publisher = "The Cognitive Science Society",
pages = "919--924",
booktitle = "CogSci 2017 - Proceedings of the 39th Annual Meeting of the Cognitive Science Society",
}