Abstract
Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at s=13TeV collected with the CMS detector in 2016–2018, and corresponding to an integrated luminosity of 137fb−1. The search is performed in the fully leptonic final state ZZ→ℓℓℓ′ℓ′, where ℓ,ℓ′=e,μ. The EW production of two jets in association with two Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is σEW(pp→ZZjj→ℓℓℓ′ℓ′jj)=0.33−0.10 +0.11(stat)−0.03 +0.04(syst)fb in the most inclusive volume, in agreement with the standard model prediction of 0.275±0.021fb. Measurements of total cross sections for jj production in association with two Z bosons are also reported. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators T0, T1, T2, T8, and T9.
Original language | English (US) |
---|---|
Article number | 135992 |
Journal | Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |
Volume | 812 |
DOIs | |
State | Published - Jan 10 2021 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
Keywords
- CMS
- Physics
- SM
- VBS
- ZZ
- aQGC
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at s=13TeV'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, Vol. 812, 135992, 10.01.2021.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at s=13TeV
AU - The CMS collaboration
AU - Sirunyan, A. M.
AU - Tumasyan, A.
AU - Adam, W.
AU - Ambrogi, F.
AU - Bergauer, T.
AU - Dragicevic, M.
AU - Erö, J.
AU - Escalante Del Valle, A.
AU - Frühwirth, R.
AU - Jeitler, M.
AU - Krammer, N.
AU - Lechner, L.
AU - Liko, D.
AU - Madlener, T.
AU - Mikulec, I.
AU - Pitters, F. M.
AU - Rad, N.
AU - Schieck, J.
AU - Schöfbeck, R.
AU - Spanring, M.
AU - Templ, S.
AU - Waltenberger, W.
AU - Wulz, C. E.
AU - Zarucki, M.
AU - Chekhovsky, V.
AU - Litomin, A.
AU - Makarenko, V.
AU - Suarez Gonzalez, J.
AU - Darwish, M. R.
AU - De Wolf, E. A.
AU - Di Croce, D.
AU - Janssen, X.
AU - Kello, T.
AU - Lelek, A.
AU - Pieters, M.
AU - Rejeb Sfar, H.
AU - Van Haevermaet, H.
AU - Van Mechelen, P.
AU - Van Putte, S.
AU - Van Remortel, N.
AU - Blekman, F.
AU - Bols, E. S.
AU - Chhibra, S. S.
AU - D'Hondt, J.
AU - De Clercq, J.
AU - Lontkovskyi, D.
AU - Lowette, S.
AU - Marlow, D.
AU - Ojalvo, I.
AU - Tully, C.
N1 - Funding Information: Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440 , 752730 , and 765710 ( European Union ); the Leventis Foundation ; the A.P. Sloan Foundation ; the Alexander von Humboldt Foundation ; the Belgian Federal Science Policy Office ; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817 ; the Beijing Municipal Science & Technology Commission , No. Z191100007219010 ; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306 ; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences , the New National Excellence Program ÚNKP , the NKFIA research grants 123842 , 123959 , 124845 , 124850 , 125105 , 128713 , 128786 , and 129058 (Hungary); the Council of Science and Industrial Research , India; the Italian and Serbian Ministries for Foreign Affairs and International Cooperation (MAECI/MFA), grant n. RS19MO06 (Italy-Serbia); the HOMING PLUS programme of the Foundation for Polish Science , cofinanced from European Union , Regional Development Fund , the Mobility Plus programme of the Ministry of Science and Higher Education , the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428 , Opus 2014/13/B/ST2/02543 , 2014/15/B/ST2/ 03998 , and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406 ; the National Priorities Research Program by Qatar National Research Fund ; the Ministry of Science and Education , grant no. 14.W03.31.0026 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program and “Nauka” Project FSWW-2020-0008 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu , grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias ; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF ; the Rachadapisek Sompot Fund for Postdoctoral Fellowship , Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); The Kavli Foundation ; the Nvidia Corporation; the SuperMicro Corporation; The Welch Foundation , contract C-1845 ; and the Weston Havens Foundation (USA). Funding Information: We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, ROSATOM, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Italian and Serbian Ministries for Foreign Affairs and International Cooperation (MAECI/MFA), grant n. RS19MO06 (Italy-Serbia); the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/ 03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Education, grant no. 14.W03.31.0026 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program and “Nauka” Project FSWW-2020-0008 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); The Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; The Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA). Publisher Copyright: © 2020 The Author(s)
PY - 2021/1/10
Y1 - 2021/1/10
N2 - Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at s=13TeV collected with the CMS detector in 2016–2018, and corresponding to an integrated luminosity of 137fb−1. The search is performed in the fully leptonic final state ZZ→ℓℓℓ′ℓ′, where ℓ,ℓ′=e,μ. The EW production of two jets in association with two Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is σEW(pp→ZZjj→ℓℓℓ′ℓ′jj)=0.33−0.10 +0.11(stat)−0.03 +0.04(syst)fb in the most inclusive volume, in agreement with the standard model prediction of 0.275±0.021fb. Measurements of total cross sections for jj production in association with two Z bosons are also reported. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators T0, T1, T2, T8, and T9.
AB - Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at s=13TeV collected with the CMS detector in 2016–2018, and corresponding to an integrated luminosity of 137fb−1. The search is performed in the fully leptonic final state ZZ→ℓℓℓ′ℓ′, where ℓ,ℓ′=e,μ. The EW production of two jets in association with two Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is σEW(pp→ZZjj→ℓℓℓ′ℓ′jj)=0.33−0.10 +0.11(stat)−0.03 +0.04(syst)fb in the most inclusive volume, in agreement with the standard model prediction of 0.275±0.021fb. Measurements of total cross sections for jj production in association with two Z bosons are also reported. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators T0, T1, T2, T8, and T9.
KW - CMS
KW - Physics
KW - SM
KW - VBS
KW - ZZ
KW - aQGC
UR - http://www.scopus.com/inward/record.url?scp=85100595063&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100595063&partnerID=8YFLogxK
U2 - 10.1016/j.physletb.2020.135992
DO - 10.1016/j.physletb.2020.135992
M3 - Article
AN - SCOPUS:85100595063
SN - 0370-2693
VL - 812
JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
M1 - 135992
ER -