Evapotranspiration depletes groundwater under warming over the contiguous United States

Laura E. Condon, Adam L. Atchley, Reed M. Maxwell

Research output: Contribution to journalArticlepeer-review

172 Scopus citations


A warmer climate increases evaporative demand. However, response to warming depends on water availability. Existing earth system models represent soil moisture but simplify groundwater connections, a primary control on soil moisture. Here we apply an integrated surface-groundwater hydrologic model to evaluate the sensitivity of shallow groundwater to warming across the majority of the US. We show that as warming shifts the balance between water supply and demand, shallow groundwater storage can buffer plant water stress; but only where shallow groundwater connections are present, and not indefinitely. As warming persists, storage can be depleted and connections lost. Similarly, in the arid western US warming does not result in significant groundwater changes because this area is already largely water limited. The direct response of shallow groundwater storage to warming demonstrates the strong and early effect that low to moderate warming may have on groundwater storage and evapotranspiration.

Original languageEnglish (US)
Article number873
JournalNature communications
Issue number1
StatePublished - Dec 1 2020
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Evapotranspiration depletes groundwater under warming over the contiguous United States'. Together they form a unique fingerprint.

Cite this