Evaluation of tropical and extratropical Southern Hemisphere African aerosol properties simulated by a climate model

Brian I. Magi, Paul Ginoux, Yi Ming, V. Ramaswamy

Research output: Contribution to journalArticle

23 Scopus citations

Abstract

We compare aerosol optical depth (AOD) and single scattering albedo (SSA) simulated by updated configurations of a version of the atmospheric model (AM2) component of the NOAA Geophysical Fluid Dynamics Laboratory general circulation model over Southern Hemisphere Africa with AOD and SSA derived from research aircraft measurements and NASA Aerosol Robotic Network (AERONET) stations and with regional AQD from the NASA Moderate Resolution Imaging Spectroradiometer satellite. The results of the comparisons suggest that AM2 AOD is biased low by 30-40% in the tropics and 0-20% in the extratropics, while AM2 SSA is biased high by 4-8%. The AM2 SSA bias is higher during the biomass burning season, and the monthly variations in AM2 SSA are poorly correlated with AERONET. On the basis of a comparison of aerosol mass in the models with measurements from southern Africa, and a detailed analysis of aerosol treatment in AM2, we suggest that the low bias in AOD and high bias in SSA are related to an underestimate of carbonaceous aerosol emissions in the biomass burning inventories used by AM2. Increases in organic matter and black carbon emissions by factors of 1.6 and 3.8 over southern Africa improve the biases in AOD and especially SSA. We estimate that the AM2 biases in AOD and SSA imply that the magnitude of annual top of the atmosphere radiative forcing in clear-sky conditions over southern Africa is overestimated (too negative) by ∼8% while surface radiative forcing is underestimated (not negative enough) by ∼20%.

Original languageEnglish (US)
Article numberD14204
JournalJournal of Geophysical Research Atmospheres
Volume114
Issue number14
DOIs
StatePublished - Jul 27 2009

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Evaluation of tropical and extratropical Southern Hemisphere African aerosol properties simulated by a climate model'. Together they form a unique fingerprint.

  • Cite this