Evaluation of a collisional radiative model for electron temperature determination in hydrogen plasma

S. P. Vinoth, E. S. Evans, C. P.S. Swanson, E. Palmerduca, S. A. Cohen

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

A collisional-radiative (CR) model that extracts the electron temperature, Te, of hydrogen plasmas from Balmer-line-ratio measurements is examined for the plasma electron density, ne, and Te ranges of 1010-1015 cm-3 and 5-500 eV, respectively. The CR code, developed and implemented in Python, has a forward component that computes the densities of excited states up to n = 15 as functions of Te, ne, and the molecular-to-atomic neutral ratio r(H2/H). The backward component provides ne and r(H2/H) as functions of the Balmer ratios to predict the Te. The model assumes Maxwellian electrons. The density profiles of the electrons and of the molecular and atomic hydrogen neutrals are shown to be of great importance, as is the accuracy of the line-ratio measurement method.

Original languageEnglish (US)
Article number093503
JournalReview of Scientific Instruments
Volume93
Issue number9
DOIs
StatePublished - Sep 1 2022

All Science Journal Classification (ASJC) codes

  • Instrumentation

Fingerprint

Dive into the research topics of 'Evaluation of a collisional radiative model for electron temperature determination in hydrogen plasma'. Together they form a unique fingerprint.

Cite this