Abstract
Increasingly strict energy policies, rising energy prices, and a desire for a positive corporate image currently serve as incentives for multinational corporations to reduce their plants' energy consumption. This paper quantitatively investigates and discusses the value of a traditional north-light roof using a complete building energy simulation and optimization framework. The findings indicate that the north-light system yields positive building energy performance for several climate zones, including: (i) Humid Subtropical; (ii) Semiarid Continental; (iii) Mediterranean; and (iv) Subtropical Highland. In the Subtropical Highland climate zone, for example, the building energy consumption of a north-light roof is up to 54% less than that of a conventional flat roof. Based on these positive findings, this paper further presents an optimization framework that alters the north-light roof shape to further improve its energy performance. To quantitatively guarantee a high probability of finding satisfactory designs while reducing the computational processing time, ordinal optimization is introduced into the scheme. The Subtropical Highland case study shows further energy building consumption reduction of 26% for an optimized north-light roof shape. The presented evaluation and optimization framework could be used in designing a plant with integrated north-lights roof that aim at energy efficiency while maintaining environmental occupant comfort levels.
Original language | English (US) |
---|---|
Pages (from-to) | 1944-1960 |
Number of pages | 17 |
Journal | Energies |
Volume | 6 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2013 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Control and Optimization
- Electrical and Electronic Engineering
Keywords
- Building energy
- Cooling
- Design
- Heating
- Lighting
- North-light
- Ordinal optimization
- Plant