Evaluating theory of mind in question answering

Aida Nematzadeh, Kaylee Burns, Erin Grant, Alison Gopnik, Thomas L. Griffiths

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

We propose a new dataset for evaluating question answering models with respect to their capacity to reason about beliefs. Our tasks are inspired by theory-of-mind experiments that examine whether children are able to reason about the beliefs of others, in particular when those beliefs differ from reality. We evaluate a number of recent neural models with memory augmentation. We find that all fail on our tasks, which require keeping track of inconsistent states of the world; moreover, the models' accuracy decreases notably when random sentences are introduced to the tasks at test.

Original languageEnglish (US)
Title of host publicationProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018
EditorsEllen Riloff, David Chiang, Julia Hockenmaier, Jun'ichi Tsujii
PublisherAssociation for Computational Linguistics
Pages2392-2400
Number of pages9
ISBN (Electronic)9781948087841
StatePublished - Jan 1 2020
Event2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 - Brussels, Belgium
Duration: Oct 31 2018Nov 4 2018

Publication series

NameProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018

Conference

Conference2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018
CountryBelgium
CityBrussels
Period10/31/1811/4/18

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint Dive into the research topics of 'Evaluating theory of mind in question answering'. Together they form a unique fingerprint.

Cite this