Evaluating the statistical significance of biclusters

Jason D. Lee, Yuekai Sun, Jonathan Taylor

Research output: Contribution to journalConference articlepeer-review

7 Scopus citations

Abstract

Biclustering (also known as submatrix localization) is a problem of high practical relevance in exploratory analysis of high-dimensional data. We develop a framework for performing statistical inference on biclusters found by score-based algorithms. Since the bicluster was selected in a data dependent manner by a biclustering or localization algorithm, this is a form of selective inference. Our framework gives exact (non-asymptotic) confidence intervals and p-values for the significance of the selected biclusters.

Original languageEnglish (US)
Pages (from-to)1324-1332
Number of pages9
JournalAdvances in Neural Information Processing Systems
Volume2015-January
StatePublished - 2015
Externally publishedYes
Event29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada
Duration: Dec 7 2015Dec 12 2015

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Evaluating the statistical significance of biclusters'. Together they form a unique fingerprint.

Cite this