Euclid preparation: XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models

H. Bretonnière, M. Huertas-Company, A. Boucaud, F. Lanusse, E. Jullo, E. Merlin, D. Tuccillo, M. Castellano, J. Brinchmann, C. J. Conselice, H. Dole, R. Cabanac, H. M. Courtois, F. J. Castander, P. A. Duc, P. Fosalba, D. Guinet, S. Kruk, U. Kuchner, S. SerranoE. Soubrie, A. Tramacere, L. Wang, A. Amara, N. Auricchio, R. Bender, C. Bodendorf, D. Bonino, E. Branchini, S. Brau-Nogue, M. Brescia, V. Capobianco, C. Carbone, J. Carretero, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, L. Conversi, Y. Copin, L. Corcione, A. Costille, M. Cropper, A. Da Silva, H. Degaudenzi, M. Douspis, F. Dubath, C. A.J. Duncan, X. Dupac, S. Dusini, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, M. Fumana, B. Garilli, W. Gillard, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, S. V.H. Haugan, W. Holmes, F. Hormuth, P. Hudelot, K. Jahnke, S. Kermiche, A. Kiessling, M. Kilbinger, T. Kitching, R. Kohley, M. Kümmel, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, I. Lloro, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, F. Marulli, R. Massey, S. Maurogordato, M. Melchior, M. Meneghetti, G. Meylan, M. Moresco, B. Morin, L. Moscardini, E. Munari, R. Nakajima, S. M. Niemi, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, S. Pires, M. Poncet, L. Popa, L. Pozzetti, F. Raison, R. Rebolo, J. Rhodes, M. Roncarelli, E. Rossetti, R. Saglia, P. Schneider, A. Secroun, G. Seidel, C. Sirignano, G. Sirri, L. Stanco, J. L. Starck, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, E. A. Valentijn, L. Valenziano, Y. Wang, N. Welikala, J. Weller, G. Zamorani, J. Zoubian, M. Baldi, S. Bardelli, S. Camera, R. Farinelli, E. Medinaceli, S. Mei, G. Polenta, E. Romelli, M. Tenti, T. Vassallo, A. Zacchei, E. Zucca, C. Baccigalupi, A. Balaguera-Antolínez, A. Biviano, S. Borgani, E. Bozzo, C. Burigana, A. Cappi, C. S. Carvalho, S. Casas, G. Castignani, C. Colodro-Conde, J. Coupon, S. De La Torre, M. Fabricius, M. Farina, P. G. Ferreira, P. Flose-Reimberg, S. Fotopoulou, S. Galeotta, K. Ganga, J. Garcia-Bellido, E. Gaztanaga, G. Gozaliasl, I. M. Hook, B. Joachimi, V. Kansal, A. Kashlinsky, E. Keihanen, C. C. Kirkpatrick, V. Lindholm, G. Mainetti, D. Maino, R. Maoli, M. Martinelli, N. Martinet, H. J. McCracken, R. B. Metcalf, G. Morgante, N. Morisset, J. Nightingale, A. Nucita, L. Patrizii, D. Potter, A. Renzi, G. Riccio, A. G. Sánchez, D. Sapone, M. Schirmer, M. Schultheis, V. Scottez, E. Sefusatti, R. Teyssier, I. Tutusaus, J. Valiviita, M. Viel, L. Whittaker, J. H. Knapen

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

We present a machine learning framework to simulate realistic galaxies for the Euclid Survey, producing more complex and realistic galaxies than the analytical simulations currently used in Euclid. The proposed method combines a control on galaxy shape parameters offered by analytic models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We simulate a galaxy field of 0.4 deg2 as it will be seen by the Euclid visible imager VIS, and we show that galaxy structural parameters are recovered to an accuracy similar to that for pure analytic Sérsic profiles. Based on these simulations, we estimate that the Euclid Wide Survey (EWS) will be able to resolve the internal morphological structure of galaxies down to a surface brightness of 22.5 mag arcsec-2, and the Euclid Deep Survey (EDS) down to 24.9 mag arcsec-2. This corresponds to approximately 250 million galaxies at the end of the mission and a 50% complete sample for stellar masses above 1010.6 M (resp. 109.6 M) at a redshift z ∼ 0.5 for the EWS (resp. EDS). The approach presented in this work can contribute to improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies.

Original languageEnglish (US)
Article numberA90
JournalAstronomy and Astrophysics
Volume657
DOIs
StatePublished - Jan 1 2022
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • Cosmology: observations
  • Galaxies: evolution
  • Galaxies: structure
  • Surveys
  • Techniques: image processing

Fingerprint

Dive into the research topics of 'Euclid preparation: XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models'. Together they form a unique fingerprint.

Cite this