TY - JOUR
T1 - Euclid preparation
T2 - LIX. Angular power spectra from discrete observations
AU - Euclid Collaboration
AU - Tessore, N.
AU - Joachimi, B.
AU - Loureiro, A.
AU - Hall, A.
AU - Cañas-Herrera, G.
AU - Tutusaus, I.
AU - Jeffrey, N.
AU - Naidoo, K.
AU - McEwen, J. D.
AU - Amara, A.
AU - Andreon, S.
AU - Auricchio, N.
AU - Baccigalupi, C.
AU - Baldi, M.
AU - Bardelli, S.
AU - Bernardeau, F.
AU - Bonino, D.
AU - Branchini, E.
AU - Brescia, M.
AU - Brinchmann, J.
AU - Caillat, A.
AU - Camera, S.
AU - Capobianco, V.
AU - Carbone, C.
AU - Cardone, V. F.
AU - Carretero, J.
AU - Casas, S.
AU - Castellano, M.
AU - Castignani, G.
AU - Cavuoti, S.
AU - Cimatti, A.
AU - Colodro-Conde, C.
AU - Congedo, G.
AU - Conselice, C. J.
AU - Conversi, L.
AU - Copin, Y.
AU - Courbin, F.
AU - Courtois, H. M.
AU - Cropper, M.
AU - Da Silva, A.
AU - Degaudenzi, H.
AU - De Lucia, G.
AU - Dinis, J.
AU - Dubath, F.
AU - Duncan, C. A.J.
AU - Dupac, X.
AU - Dusini, S.
AU - Farina, M.
AU - Farrens, S.
AU - Teyssier, R.
N1 - Publisher Copyright:
© The Authors 2025.
PY - 2025/2/1
Y1 - 2025/2/1
N2 - In this paper we present the framework for measuring angular power spectra in the Euclid mission. The observables in galaxy surveys, such as galaxy clustering and cosmic shear, are not continuous fields, but discrete sets of data, obtained only at the positions of galaxies. We show how to compute the angular power spectra of such discrete data sets, without treating observations as maps of an underlying continuous field that is overlaid with a noise component. This formalism allows us to compute the exact theoretical expectations for our measured spectra, under a number of assumptions that we track explicitly. In particular, we obtain exact expressions for the additive biases ('shot noise') in angular galaxy clustering and cosmic shear. For efficient practical computations, we introduce a spin-weighted spherical convolution with a well-defined convolution theorem, which allows us to apply exact theoretical predictions to finite-resolution maps, including HEALPix. When validating our methodology, we find that our measurements are biased by less than 1% of their statistical uncertainty in simulations of Euclid's first data release.
AB - In this paper we present the framework for measuring angular power spectra in the Euclid mission. The observables in galaxy surveys, such as galaxy clustering and cosmic shear, are not continuous fields, but discrete sets of data, obtained only at the positions of galaxies. We show how to compute the angular power spectra of such discrete data sets, without treating observations as maps of an underlying continuous field that is overlaid with a noise component. This formalism allows us to compute the exact theoretical expectations for our measured spectra, under a number of assumptions that we track explicitly. In particular, we obtain exact expressions for the additive biases ('shot noise') in angular galaxy clustering and cosmic shear. For efficient practical computations, we introduce a spin-weighted spherical convolution with a well-defined convolution theorem, which allows us to apply exact theoretical predictions to finite-resolution maps, including HEALPix. When validating our methodology, we find that our measurements are biased by less than 1% of their statistical uncertainty in simulations of Euclid's first data release.
KW - Cosmology: observations
KW - Gravitational lensing: weak
KW - Large-scale structure of Universe
KW - Methods: statistical
KW - Surveys
UR - http://www.scopus.com/inward/record.url?scp=85218102268&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85218102268&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/202452018
DO - 10.1051/0004-6361/202452018
M3 - Article
AN - SCOPUS:85218102268
SN - 0004-6361
VL - 694
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A141
ER -