Abstract
A new fourth-order accurate finite difference scheme for the computation of unsteady viscous incompressible flows is introduced. The scheme is based on the vorticity-stream function formulation. It is essentially compact and has the nice features of a compact scheme with regard to the treatment of boundary conditions. It is also very efficient, at every time step or Runge-Kutta stage, only two Poisson-like equations have to be solved. The Poisson-like equations are amenable to standard fast Poisson solvers usually designed for second order schemes. Detailed comparison with the second-order scheme shows the clear superiority of this new fourth-order scheme in resolving both the boundary layers and the gross features of the flow. This efficient fourth-order scheme also made it possible to compute the driven cavity flow at Reynolds number 106 on a 10242 grid at a reasonable cost. Fourth-order convergence is proved under mild regularity requirements. This is the first such result to our knowledge.
Original language | English (US) |
---|---|
Pages (from-to) | 122-138 |
Number of pages | 17 |
Journal | Journal of Computational Physics |
Volume | 126 |
Issue number | 1 |
DOIs | |
State | Published - Jun 1996 |
All Science Journal Classification (ASJC) codes
- Numerical Analysis
- Modeling and Simulation
- Physics and Astronomy (miscellaneous)
- General Physics and Astronomy
- Computer Science Applications
- Computational Mathematics
- Applied Mathematics