TY - JOUR
T1 - Essential metals for nitrogen fixation in a free-living N2-fixing bacterium
T2 - Chelation, homeostasis and high use efficiency
AU - Bellenger, J. P.
AU - Wichard, T.
AU - Xu, Y.
AU - Kraepiel, A. M.L.
PY - 2011/6
Y1 - 2011/6
N2 - Biological nitrogen fixation, the main source of new nitrogen to the Earth's ecosystems, is catalysed by the enzyme nitrogenase. There are three nitrogenase isoenzymes: the Mo-nitrogenase, the V-nitrogenase and the Fe-only nitrogenase. All three types require iron, and two of them also require Mo or V. Metal bioavailability has been shown to limit nitrogen fixation in natural and managed ecosystems. Here, we report the results of a study on the metal (Mo, V, Fe) requirements of Azotobacter vinelandii, a common model soil diazotroph. In the growth medium of A. vinelandii, metals are bound to strong complexing agents (metallophores) excreted by the bacterium. The uptake rates of the metallophore complexes are regulated to meet the bacterial metal requirement for diazotrophy. Under metal-replete conditions Mo, but not V or Fe, is stored intracellularly. Under conditions of metal limitation, intracellular metals are used with remarkable efficiency, with essentially all the cellular Mo and V allocated to the nitrogenase enzymes. While the Mo-nitrogenase, which is the most efficient, is used preferentially, all three nitrogenases contribute to N2 fixation in the same culture under metal limitation. We conclude that A. vinelandii is well adapted to fix nitrogen in metal-limited soil environments.
AB - Biological nitrogen fixation, the main source of new nitrogen to the Earth's ecosystems, is catalysed by the enzyme nitrogenase. There are three nitrogenase isoenzymes: the Mo-nitrogenase, the V-nitrogenase and the Fe-only nitrogenase. All three types require iron, and two of them also require Mo or V. Metal bioavailability has been shown to limit nitrogen fixation in natural and managed ecosystems. Here, we report the results of a study on the metal (Mo, V, Fe) requirements of Azotobacter vinelandii, a common model soil diazotroph. In the growth medium of A. vinelandii, metals are bound to strong complexing agents (metallophores) excreted by the bacterium. The uptake rates of the metallophore complexes are regulated to meet the bacterial metal requirement for diazotrophy. Under metal-replete conditions Mo, but not V or Fe, is stored intracellularly. Under conditions of metal limitation, intracellular metals are used with remarkable efficiency, with essentially all the cellular Mo and V allocated to the nitrogenase enzymes. While the Mo-nitrogenase, which is the most efficient, is used preferentially, all three nitrogenases contribute to N2 fixation in the same culture under metal limitation. We conclude that A. vinelandii is well adapted to fix nitrogen in metal-limited soil environments.
UR - http://www.scopus.com/inward/record.url?scp=79957989487&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79957989487&partnerID=8YFLogxK
U2 - 10.1111/j.1462-2920.2011.02440.x
DO - 10.1111/j.1462-2920.2011.02440.x
M3 - Article
C2 - 21392197
AN - SCOPUS:79957989487
SN - 1462-2912
VL - 13
SP - 1395
EP - 1411
JO - Environmental Microbiology
JF - Environmental Microbiology
IS - 6
ER -