Abstract
Realistic models of solar prominence flux ropes are numerically constructed. The models are in 2.5 dimensions, including the effects of non-isothermal temperature, density and gravity, and pressure. Stability of the equilibria to pressure- and gravity-driven instabilities is numerically investigated, using the ballooning formalism of fusion plasma theory. The equilibrium models can become unstable to pressure- and gravity-driven modes at plasma parameters characteristic of prominences.
Original language | English (US) |
---|---|
Pages (from-to) | 93-117 |
Number of pages | 25 |
Journal | Solar Physics |
Volume | 201 |
Issue number | 1 |
DOIs | |
State | Published - 2001 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science