Equilibration and coarsening in the quantum O(N) model at infinite N

Anushya Chandran, Arun Nanduri, Steven S. Gubser, Shivaji Lal Sondhi

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

The quantum O(N) model in the infinite-N limit is a paradigm for symmetry breaking. Qualitatively, its phase diagram is an excellent guide to the equilibrium physics for more realistic values of N in varying spatial dimensions (d>1). Here, we investigate the physics of this model out of equilibrium, specifically its response to global quenches starting in the disordered phase. If the model were to exhibit equilibration, the late-time state could be inferred from the finite-temperature phase diagram. In the infinite-N limit, we show that not only does the model not lead to equilibration on account of an infinite number of conserved quantities, it also does not relax to a generalized Gibbs ensemble (GGE) consistent with these conserved quantities. Instead, an infinite number of new conservation laws emerge at late times and the system relaxes to an emergent GGE consistent with these. Nevertheless, we still find that the late-time states following quenches bear strong signatures of the equilibrium phase diagram. Notably, we find that the model exhibits coarsening to a nonequilibrium critical state only in dimensions d>2, that is, if the equilibrium phase diagram contains an ordered phase at nonzero temperatures.

Original languageEnglish (US)
Article number024306
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume88
Issue number2
DOIs
StatePublished - Jul 31 2013

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Equilibration and coarsening in the quantum O(N) model at infinite N'. Together they form a unique fingerprint.

Cite this