TY - JOUR
T1 - Entanglement spectrum classification of Cn-invariant noninteracting topological insulators in two dimensions
AU - Fang, Chen
AU - Gilbert, Matthew J.
AU - Bernevig, B. Andrei
PY - 2013/1/14
Y1 - 2013/1/14
N2 - We study the single-particle entanglement spectrum in 2D topological insulators which possess n-fold rotation symmetry. By defining a series of special choices of subsystems on which the entanglement is calculated, or real space cuts, we find that the number of protected in-gap states for each type of these real space cuts is a quantum number indexing (if any) nontrivial topology in these insulators. We explicitly show that the number of protected in-gap states is determined by a Zn index (z1,...,zn), where zm is the number of occupied states that transform according to mth one-dimensional representation of the Cn point group. We find that for a space cut separating 1/pth of the system, the entanglement spectrum contains in-gap states pinned in an interval of entanglement eigenvalues [1/p,1-1/p]. We determine the number of such in-gap states for an exhaustive variety of cuts, in terms of the Zn index. Furthermore, we show that in a homogeneous system, the Zn index can be determined through an evaluation of the eigenvalues of point-group symmetry operators at all high-symmetry points in the Brillouin zone. When disordered n-fold rotationally symmetric systems are considered, we find that the number of protected in-gap states is identical to that in the clean limit as long as the disorder preserves the underlying point-group symmetry and does not close the bulk insulating gap.
AB - We study the single-particle entanglement spectrum in 2D topological insulators which possess n-fold rotation symmetry. By defining a series of special choices of subsystems on which the entanglement is calculated, or real space cuts, we find that the number of protected in-gap states for each type of these real space cuts is a quantum number indexing (if any) nontrivial topology in these insulators. We explicitly show that the number of protected in-gap states is determined by a Zn index (z1,...,zn), where zm is the number of occupied states that transform according to mth one-dimensional representation of the Cn point group. We find that for a space cut separating 1/pth of the system, the entanglement spectrum contains in-gap states pinned in an interval of entanglement eigenvalues [1/p,1-1/p]. We determine the number of such in-gap states for an exhaustive variety of cuts, in terms of the Zn index. Furthermore, we show that in a homogeneous system, the Zn index can be determined through an evaluation of the eigenvalues of point-group symmetry operators at all high-symmetry points in the Brillouin zone. When disordered n-fold rotationally symmetric systems are considered, we find that the number of protected in-gap states is identical to that in the clean limit as long as the disorder preserves the underlying point-group symmetry and does not close the bulk insulating gap.
UR - http://www.scopus.com/inward/record.url?scp=84872918051&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872918051&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.87.035119
DO - 10.1103/PhysRevB.87.035119
M3 - Article
AN - SCOPUS:84872918051
SN - 1098-0121
VL - 87
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 3
M1 - 035119
ER -