Entanglement negativity of fermions: Monotonicity, separability criterion, and classification of few-mode states

Hassan Shapourian, Shinsei Ryu

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


We study quantum information aspects of the fermionic entanglement negativity recently introduced [H. Shapourian, Phys. Rev. B 95, 165101 (2017)10.1103/PhysRevB.95.165101] based on the fermionic partial transpose. In particular, we show that it is an entanglement monotone under the action of local quantum operations and classical communications, which preserves the local fermion-number parity, and satisfies other common properties expected for an entanglement measure of mixed states. We present fermionic analogs of tripartite entangled states such as W and Greenberger-Horne-Zeilinger states and compare the results of bosonic and fermionic partial transpose in various fermionic states, where we explain why the bosonic partial transpose fails in distinguishing separable states of fermions. Finally, we explore a set of entanglement quantities which distinguish different classes of entangled states of a system with two and three fermionic modes. In doing so, we prove that vanishing entanglement negativity is a necessary and sufficient condition for separability of N≥2 fermionic modes with respect to the bipartition into one mode and the rest. We further conjecture that the entanglement negativity of inseparable states which mix local fermion-number parity is always nonvanishing.

Original languageEnglish (US)
Article number022310
JournalPhysical Review A
Issue number2
StatePublished - Feb 11 2019
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Entanglement negativity of fermions: Monotonicity, separability criterion, and classification of few-mode states'. Together they form a unique fingerprint.

Cite this