@article{72234443a6c7456188e1426b5a5624ee,
title = "Enigmatic surface rolls of the Ellesmere Ice Shelf",
abstract = "The once-contiguous Ellesmere Ice Shelf, first reported in writing by European explorers in 1876, and now almost completely disintegrated, has rolling, wave-like surface topography, the origin of which we investigate using a viscous buckling instability analysis. We show that rolls can develop during a winter season (∼ 100 d) if sea-ice pressure (depth-integrated horizontal stress applied to the seaward front of the Ellesmere Ice Shelf) is sufficiently large (1 MPa m) and ice thickness sufficiently low (1-10 m). Roll wavelength initially depends only on sea-ice pressure, but evolves over time depending on amplitude growth rate. This implies that a thinner ice shelf, with its faster amplitude growth rate, will have a shorter wavelength compared to a thicker ice shelf when sea-ice pressure is equal. A drawback of the viscous buckling mechanism is that roll amplitude decays once sea-ice pressure is removed. However, non-Newtonian ice rheology, where effective viscosity, and thus roll change rate, depends on total applied stress may constrain roll decay rate to be much slower than growth rate and allow roll persistence from year to year. Whether the viscous-buckling mechanism we explore here ultimately can be confirmed as the origin of the Ellesmere Ice Shelf rolls remains for future research.",
keywords = "Arctic glaciology, ice rheology, ice shelves, sea-ice modeling, sea-ice/ice-shelf interactions",
author = "Coffey, {Niall B.} and Macayeal, {Douglas R.} and Luke Copland and Mueller, {Derek R.} and Sergienko, {Olga V.} and Banwell, {Alison F.} and Lai, {Ching Yao}",
note = "Funding Information: The research reported here was initiated by Coffey as part of an undergraduate research internship at the University of Chicago supported by the Jeff Metcalf Undergraduate Research Internship Fund and advised by MacAyeal. Support to MacAyeal and Banwell was provided by the US National Science Foundation (NSF-OPP) under grants 1841467 awarded to the University of Chicago, and 1841607 to the University of Colorado Boulder, respectively. This report was prepared by Sergienko under award NA18OAR4320123 from the National Oceanic and Atmospheric Administration, USDepartment of Commerce. The statements, findings, conclusions and recommendations are those of the author(s) and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration, or the US Department of Commerce. Copland and Mueller acknowledge the Natural Sciences and Engineering Research Council of Canada, and ArcticNet Network of Centres of Excellence Canada, for funding. We thank Anthony Powell for allowing us to use his photograph displayed in . Photograph in is from the Antarctic Map and Photograph Library, US Geological Survey. We thank Gerald Holdsworth for both being an inspiration for this study and for helpful advice on the manuscript. We thank the scientific editor, Alan Rempel, and two anonymous referees for providing constructive advice, editing suggestions and for alerting us to a previously unrealized implication of our analysis. Funding Information: The research reported here was initiated by Coffey as part of an undergraduate research internship at the University of Chicago supported by the Jeff Metcalf Undergraduate Research Internship Fund and advised by MacAyeal. Support to MacAyeal and Banwell was provided by the US National Science Foundation (NSF-OPP) under grants 1841467 awarded to the University of Chicago, and 1841607 to the University of Colorado Boulder, respectively. This report was prepared by Sergienko under award NA18OAR4320123 from the National Oceanic and Atmospheric Administration, USDepartment of Commerce. The statements, findings, conclusions and recommendations are those of the author(s) and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration, or the US Department of Commerce. Copland and Mueller acknowledge the Natural Sciences and Engineering Research Council of Canada, and ArcticNet Network of Centres of Excellence Canada, for funding. We thank Anthony Powell for allowing us to use his photograph displayed in Figure 5b. Photograph in Figure 5c is from the Antarctic Map and Photograph Library, US Geological Survey. We thank Gerald Holdsworth for both being an inspiration for this study and for helpful advice on the manuscript. We thank the scientific editor, Alan Rempel, and two anonymous referees for providing constructive advice, editing suggestions and for alerting us to a previously unrealized implication of our analysis. Publisher Copyright: Copyright {\textcopyright} 2022 The Author(s). Published by Cambridge University Press.",
year = "2022",
month = oct,
day = "28",
doi = "10.1017/jog.2022.3",
language = "English (US)",
volume = "68",
pages = "867--878",
journal = "Journal of Glaciology",
issn = "0022-1430",
publisher = "International Glaciology Society",
number = "271",
}