Enhancing wavelength selection for quantum cascade laser based chemical sensors by cavity length variation

Christina Young, Richard Cendejas, Scott S. Howard, Wendy Sanchez-Vaynshteyn, Anthony J. Hoffman, Kale J. Franz, Yu Yao, Boris Mizaikoff, Xiaojun Wang, Jenyu Fan, Claire F. Gmachl

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Varying Quantum Cascade laser cavity length results in gain peak selection across a 118 cm-1 range; a result of a change in threshold voltage, and applied electric field as a function of cavity length.

Original languageEnglish (US)
Title of host publication2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference, CLEO/QELS 2009
StatePublished - 2009
Event2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference, CLEO/QELS 2009 - Baltimore, MD, United States
Duration: Jun 2 2009Jun 4 2009

Publication series

Name2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference, CLEO/QELS 2009

Other

Other2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference, CLEO/QELS 2009
Country/TerritoryUnited States
CityBaltimore, MD
Period6/2/096/4/09

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Enhancing wavelength selection for quantum cascade laser based chemical sensors by cavity length variation'. Together they form a unique fingerprint.

Cite this