Enhanced tuneable rotatory power in a rotating plasma

Renaud Gueroult, Jean Marcel Rax, Nathaniel J. Fisch

Research output: Contribution to journalArticlepeer-review

Abstract

The gyrotropic properties of a rotating magnetized plasma are derived analytically. Mechanical rotation leads to a new cutoff for wave propagation along the magnetic field, and polarization rotation above this cutoff is the sum of the classical magneto-optical Faraday effect and the mechanico-optical polarization drag. Exploiting the very large effective group index near the cutoff, we expose here that polarization drag can be 104 larger than Faraday rotation at GHz frequency. The rotation leads to weak absorption while allowing direct frequency control, demonstrating the unique potential of rotating plasmas for nonreciprocal elements. The very large rotation frequency of a dense non-neutral plasma could enable unprecedented gyrotropy in the THz regime.

Original languageEnglish (US)
Article number051202
JournalPhysical Review E
Volume102
Issue number5
DOIs
StatePublished - Nov 19 2020

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Enhanced tuneable rotatory power in a rotating plasma'. Together they form a unique fingerprint.

Cite this