Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet-triplet annihilation

Yun Hui L. Lin, Marius Koch, Alyssa N. Brigeman, David M.E. Freeman, Lianfeng Zhao, Hugo Bronstein, Noel C. Giebink, Gregory D. Scholes, Barry P. Rand

Research output: Contribution to journalArticle

33 Scopus citations

Abstract

Conventional solar cells absorb photons with energy above the bandgap of the active layer while sub-bandgap photons are unharvested. One way to overcome this loss is to capture the low energy light in the triplet state of a molecule capable of undergoing triplet-triplet annihilation (TTA), which pools the energy of two triplet states into one high energy singlet state that can then be utilized. This mechanism underlies the function of an organic intermediate band solar cell (IBSC). Here, we report a solid-state organic IBSC that shows enhanced photocurrent derived from TTA that converts sub-bandgap light into charge carriers. Femtosecond resolution transient absorption spectroscopy and delayed fluorescence spectroscopy provide evidence for the triplet sensitization and upconversion mechanisms, while external quantum efficiency measurements in the presence of a broadband background light demonstrate that sub-bandgap performance enhancements are achievable in this device. The solid-state architecture introduced in this work serves as an alternative to previously demonstrated solution-based IBSCs, and is a compelling model for future research efforts in this area.

Original languageEnglish (US)
Pages (from-to)1465-1475
Number of pages11
JournalEnergy and Environmental Science
Volume10
Issue number6
DOIs
StatePublished - Jun 2017

All Science Journal Classification (ASJC) codes

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

Fingerprint Dive into the research topics of 'Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet-triplet annihilation'. Together they form a unique fingerprint.

Cite this