Abstract
Exceptional points (EPs) were recently predicted to modify the spontaneous emission rate or Purcell factor of narrow-band emitters embedded in resonant cavities. We demonstrate that EPs can have an even greater impact on nonlinear optical processes like frequency conversion by deriving a general formula quantifying radiative emission from a subwavelength emitter in the vicinity of a triply resonant χ(2) cavity that supports an EP near the emission frequency and a bright mode at the second harmonic. We show that the resulting frequency up-conversion process can be enhanced by up to two orders of magnitude compared to nondegenerate scenarios and that, in contrast to the recently predicted spontaneous-emission enhancements, nonlinear EP enhancements can persist even when considering spatial distributions of broadband emitters, provided that the cavity satisfies special nonlinear selection rules. This is demonstrated via a two-dimensional proof-of-concept PhC designed to partially fulfill the various criteria needed to approach the derived bounds on the maximum achievable up-conversion efficiencies. Our predictions suggest an indirect but practically relevant route to experimentally observe the impact of EPs on spontaneous emission, with implications to quantum information science.
Original language | English (US) |
---|---|
Article number | 224303 |
Journal | Physical Review B |
Volume | 96 |
Issue number | 22 |
DOIs | |
State | Published - Dec 26 2017 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics