Abstract
Chloroform is a general solvent for poly(3-hexylthiophene) (P3HT) active layers in field-effect transistors. However, its low boiling point and rapid evaporation limit the time for crystallization during the spin-coating process, and field-effect mobilities achieved for P3HT films spin-coated from chloroform are typically on the order of 0.01 cm2/(V s). Here we investigate a range of solvents with higher boiling points. We find that 1,2,4- trichlorobenzene with good solubility and a high boiling point significantly improves the field-effect mobilities up to 0.12 cm2/(V s) with on:off ratios of 106. By controlling the microstructure through the choice of solvent while keeping the molecular weight fixed, we observe a clear correlation between the field-effect mobility and the degree of microcrystalline order as measured by X-ray diffraction, as well as the strength of polaronic relaxation of charge carriers in the accumulation layer as measured by optical spectroscopy of field-induced charge.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 4772-4776 |
| Number of pages | 5 |
| Journal | Chemistry of Materials |
| Volume | 16 |
| Issue number | 23 |
| DOIs | |
| State | Published - Nov 16 2004 |
| Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Chemical Engineering
- Materials Chemistry