Abstract
Acidimicrobium sp. Strain A6 (A6) can degrade perfluoroalkyl acids (PFAAs) by oxidizing NH4+ while reducing Fe(Ⅲ). However, supplying and distributing Fe(III) phases in sediments is challenging since surface charges of Fe(III)-phases are typically positive while those of sediments are negative. Therefore, ferrihydrite particles were coated with polyacrylic acid (PAA) with four different molecular weights, resulting in a negative zeta potential on their surface. Zeta potential was determined as a function of pH and PAA loading, with the lowest value observed when the PAA/ferrihydrite ratio was > 1/5 (w/w) at a pH of 5.5. Several 50-day incubations with an A6-enrichment culture were conducted to determine the effect of PAA-coated ferrihydrite as the electron acceptor of A6 on the Feammox activity and PFOA degradation. NH4+ oxidation, PFOA degradation, production of shorter-chain PFAS, and F- were observed in all PAA-coated samples. The 6 K and 450 K treatments exhibited significant reductions in PFOA concentration and substantial F- production compared to incubations with bare ferrihydrite. Electrochemical impedance spectroscopy showed lowered charge transfer resistance in the presence of PAA-coated ferrihydrite, indicating that PAAs facilitated electron transfer to ferrihydrite. This study highlights the potential of PAA-coated ferrihydrite in accelerating PFAS defluorination, providing novel insights for A6-based bioremediation strategies.
Original language | English (US) |
---|---|
Article number | 132039 |
Journal | Journal of Hazardous Materials |
Volume | 459 |
DOIs | |
State | Published - Oct 5 2023 |
All Science Journal Classification (ASJC) codes
- Pollution
- Waste Management and Disposal
- Health, Toxicology and Mutagenesis
- Environmental Engineering
- Environmental Chemistry
Keywords
- Ammonium oxidation
- Bioremediation
- Feammox
- PFAS
- Reductive defluorination
- Zeta potential