Energy-twisted boundary condition and response in one-dimensional quantum many-body systems

Ryota Nakai, Taozhi Guo, Shinsei Ryu

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Thermal transport in condensed matter systems is traditionally formulated as a response to a background gravitational field. In this work, we seek a twisted-boundary-condition formalism for thermal transport in analogy to the U(1) twisted boundary condition for electrical transport. Specifically, using the transfer matrix formalism, we introduce what we call the energy-twisted boundary condition, and study the response of the system to the boundary condition. As specific examples, we obtain the thermal Meissner stiffness of (1+1)-dimensional CFT, the Ising model, and disordered fermion models. We also identify the boost deformation of integrable systems as a bulk counterpart of the energy-twisted boundary condition. We show that the boost deformation of the free fermion chain can be solved explicitly by solving the inviscid Burgers equation. We also discuss the boost deformation of the XXZ model, and its nonlinear thermal Drude weights, by studying the boost-deformed Bethe ansatz equations.

Original languageEnglish (US)
Article number155128
JournalPhysical Review B
Volume106
Issue number15
DOIs
StatePublished - Oct 15 2022

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Energy-twisted boundary condition and response in one-dimensional quantum many-body systems'. Together they form a unique fingerprint.

Cite this