Abstract
Onsager conjectured that weak solutions of the Euler equations for incompressible fluids in ℝ3 conserve energy only if they have a certain minimal smoothness (of the order of 1/3 fractional derivatives) and that they dissipate energy if they are rougher. In this paper we prove that energy is conserved for velocities in the function space B3,c(ℕ) 1/3. We show that this space is sharp in a natural sense. We phrase the energy spectrum in terms of the Littlewood-Paley decomposition and show that the energy flux is controlled by local interactions. This locality is shown to hold also for the helicity flux; moreover, every weak solution of the Euler equations that belongs to B3,c(ℕ)1/3 conserves helicity. In contrast, in two dimensions, the strong locality of the enstrophy holds only in the ultraviolet range.
Original language | English (US) |
---|---|
Pages (from-to) | 1233-1252 |
Number of pages | 20 |
Journal | Nonlinearity |
Volume | 21 |
Issue number | 6 |
DOIs | |
State | Published - Jun 1 2008 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Mathematical Physics
- General Physics and Astronomy
- Applied Mathematics