Energy conservation and Onsager's conjecture for the Euler equations

A. Cheskidov, Peter Constantin, S. Friedlander, R. Shvydkoy

Research output: Contribution to journalArticlepeer-review

198 Scopus citations


Onsager conjectured that weak solutions of the Euler equations for incompressible fluids in ℝ3 conserve energy only if they have a certain minimal smoothness (of the order of 1/3 fractional derivatives) and that they dissipate energy if they are rougher. In this paper we prove that energy is conserved for velocities in the function space B3,c(ℕ) 1/3. We show that this space is sharp in a natural sense. We phrase the energy spectrum in terms of the Littlewood-Paley decomposition and show that the energy flux is controlled by local interactions. This locality is shown to hold also for the helicity flux; moreover, every weak solution of the Euler equations that belongs to B3,c(ℕ)1/3 conserves helicity. In contrast, in two dimensions, the strong locality of the enstrophy holds only in the ultraviolet range.

Original languageEnglish (US)
Pages (from-to)1233-1252
Number of pages20
Issue number6
StatePublished - Jun 1 2008

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • General Physics and Astronomy
  • Applied Mathematics


Dive into the research topics of 'Energy conservation and Onsager's conjecture for the Euler equations'. Together they form a unique fingerprint.

Cite this